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Supplementary Material

This supplementary material provides additional details
on our method and results that complement the main paper.
Sec. 7 details the segmentation and reconstruction of the ob-
ject. Sec. 8 elaborates on the HOI contact alignment stage
of the HOI optimization process. Finally, Sec. 9 presents
further experiments and analyses, demonstrating the robust-
ness and versatility of our method.

7. Initial Reconstruction of Hand and Object
7.1. Hand-Object Interaction Reasoning

Please segment all hands 
in this image.

What is being held by the 
hand? Please output a 
segmentation mask.

Figure 8. Given an input image, we use predefined prompt to rea-
son the segmentation of hand and object.

Before reconstructing the Hand-Object interaction, we
first need to identify the region of interest, specifically, the
area in the input image where the object is in interaction
with the hand. This is a challenging task, as many in-the-
wild images contain multiple objects, but only one is being
actively interacted with.

Reasoning with Vision-Language Model. Inspired by
the recent success of vision-language models in image un-
derstanding, we employ LISA, a context-aware segmenta-
tion model, to analyze and segment hand-object interac-
tions. As illustrated in Fig. 8, given a single input im-
age, we prompt the LISA model with two queries to ob-
tain segmentation masks for the hand and the object: 1)
”Please segment all hands in this image.”; 2) ”What is
being held by the hand? Please provide its segmentation
mask.” LISA’s visual-language capabilities enable precise
segmentation masks for both the hand and its interacting
object.

Contour-guided Filtering. Although the LISA model
can successfully reason about and segment the hand and the
object it interacts with in most cases, we observed there still
exist imperfections in the segmentation masks that hinder

Figure 9. The figure illustrates the segmentation and contour ex-
traction for hand-object interaction analysis. Image (a) is the input
image. Image (b) displays the corresponding contours extracted
from the object and hand masks. Black contours represent the
hand, while red contours highlight the target object parts crucial
for HOI understanding. Green contours indicate redundant masks
identified for removal, as they do not contribute to the hand-object
interaction being analyzed. Image (c) and (d) depict the segmented
object and hand masks.

further processing. As shown in Fig. 9, LISA incorrectly
segments redundant masks of objects that are not interacted
with hands. This error may arise because the cookies share
the same language description and similar visual appear-
ance.

To address the issue mentioned above, we propose a
contour-guided filtering strategy. Specifically, we first ex-
tract the contours of the hand and all segmented objects. If
an object is being interacted with, its contour should be ad-
jacent to the hand’s. Based on this assumption, we discard
objects whose contours are not neighboring the hand’s. This
approach enables us to accurately obtain the segmentation
mask for the objects that hands interacts with.

7.2. Object Reconstruction

Here we present details on how to reconstruct the object
from input image. First we remove occlusions from the im-
age, then re-segment the complete object image, and finally
generate the corresponding object mesh using this object
image.
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Figure 10. We conducted a comparative analysis of reconstruction
results between original images and those subjected to inpainting.
The top row displays results from the original image, while the
bottom row presents results obtained from images after applying
the inpainting process.

Stable diffusion based inpainting
Prompt = "Remove the hand from the object and restore the 
object to its original appearance. Remove all the fingers."
Negative prompt = "fingers; hands; ugly"

(a) Input image (b) Hand segmentation

(c) Inpainted image (d) Segmented object

Stable diffusion based inpainting
Prompt = "Remove the hand from the object and restore the 
object to its original appearance. Remove all the fingers."
Negative prompt = "fingers; hands; ugly"

(a) Input image (b) Hand segmentation

(c) Inpainted image (d) Segmented object

Stable Diffusion Based Inpainting
Prompt = “ Remove the hand from the object and restore the 

object to its original appearance. Remove all the fingers.”

(a) Input Image (b) Hand Segmentation

(c) Inpainted Image (d) Segmented Object

Figure 11. Illustration of the inpainting process. Given an input
image containing a hand and a corresponding hand mask, a text-
guided diffusion model effectively removes the hand from the im-
age and inpaints the masked region.

Object occlusion removal via image inpainting. Since
objects interacting with hands are often partially occluded
in the image, directly using the original input to reconstruct
the object’s 3D geometry can result in distorted and incom-
plete shapes. To obtain a more accurate 3D geometry, we
first use a diffusion model [43, 71] to recover the complete
appearance of the object in 2D image.

As illustrated in Fig. 11, we employ a stable diffusion
model for object inpainting, using the input image and hand
mask alongside a tailored text prompt. The hand mask iden-
tifies regions requiring inpainting, while the text prompt
guides the reconstruction of the object’s original appear-

ance. Thanks to the robust generalization capabilities of
stable diffusion, this inpainting approach successfully syn-
thesizes the occluded object regions across diverse scenar-
ios, producing photorealistic results.

Re-segment from Inpainted Image. With the inpainted
image, we utilize a large reconstruction model, In-
stantMesh, to reconstruct the object’s geometry. Since In-
stantMesh requires a background-free input, we must first
obtain the segmentation mask of the inpainted object. To
generate this mask, we use the occluded object mask as an
indicator. As shown in Fig. 10, the occluded mask typically
consists of multiple sub-masks due to the hand separating
the object. We randomly sample points within each sub-
mask and compute a bounding box that loosely covers the
occluded mask. These sampled points and the bounding
box serve as prompts for the SAM model, which extract the
object from the inpainted image. Finally, InstantMesh takes
the completed object as input and reconstructs its geometry.

Watertight Post-processing. In hand-object interactions,
mutual occlusions naturally occur and are intrinsically
linked to contact relationships. The reconstructed meshes
from the LRM are sometimes non-watertight, which can
hinder robust and accurate hand-pose optimization. To ad-
dress this, we convert the non-watertight meshes into wa-
tertight ones when needed. For a non-watertight mesh, we
first render depth maps from multiple viewpoints that cover
the entire object. These depth maps are then fused into a
unified point cloud, which helps eliminate isolated and oc-
cluded parts. Next, we apply the Poisson reconstruction
method to generate a mesh from the point cloud. Finally,
a hole-filling algorithm [1] is used to ensure the mesh meets
the watertight requirement.

8. Hand-Object Interaction Optimization
HOI Contact Alignment. We identify potential contact
regions by analyzing two types of hand-object overlaps in
the input image. For front-side contacts, where the ob-
ject is occluded by the hand, we compute the contact mask
Mfront = M̂o \Mo as the difference between the inpainted
object mask M̂o and the original object mask Mo. For back-
side contacts, where the hand is occluded by the object, we
derive the contact mask Mback = M̂h \ Mh as the differ-
ence between complete hand mask M̂h and the segmented
hand mask Mh. The complete hand mask is obtained by
rendering on the pose and camera parameters estimated by
HaMeR.

From the contact masks Mfront and Mback, we recover 3D
contact points via ray-casting to hand and object geometries
seperately. As shown in the Fig. 4 in the main paper, we
can emit a ray from each pixel on contact masks to hit the



reconstructed object and hand. Through the application of
rasterization and depth peeling techniques, we extract mul-
tiple depth values from different layers of the 3D models.
In our implementation, we utilize four depth layers, which
we have empirically found to be sufficient for all test cases
in our experiments.

For ray-object intersections, we select the minimum
depth values within Mfront and maximum depth values
within Mback, corresponding to the nearest and farthest
points from the camera respectively.

Regarding the ray-hand intersection, it is important to
note that the functional area for grasping is limited to the
palmar surface. The dorsal side of the hand, comprising the
back of the hand and fingers, is not involved in object ma-
nipulation. We manually select and label faces correspond-
ing to the palmar and dorsal regions on the MANO template
model as a preprocessing step. This anatomical annotation
serves as prior knowledge, allowing us to efficiently exclude
3D points located on the dorsal side. Therefore, valid hand
contact points are determined for each pixel in Mfront and
Mback by filtering ray intersections based on face indices
to retain only palmar-side points, then selecting the nearest
and farthest intersections based on depth value.

Once all potential contact points on both the hand and
the object are identified, we apply the Iterative Closest
Point (ICP) method to compute the optimal hand transla-
tion, aligning the contact points and providing a rough esti-
mation of the hand’s pose.

9. Experiments
9.1. Running Time Analysis
We measured the processing time for 65 images at each
stage and calculated the average runtime. The initial re-
construction stage required an average of 58.97 seconds,
with the breakdown as follows: HOI Reasoning (11.68 sec-
onds), Hand Reconstruction (5.54 seconds), Object Inpaint-
ing (15.55 seconds), and Object Reconstruction (26.20 sec-
onds). For the optimization stage, the average runtime was
57.03 seconds, consisting of Camera Setup (4.41 seconds),
Contact Alignment (30.51 seconds), and Hand Refinement
(22.11 seconds).

9.2. Ablation on Large Models
The Selection of HOI Reasoning Models. In addition to
the vision-language model, we examine the Hand-Object
detector (HODet)[53] for segmenting hands and objects in
input images. To compare HOI reasoning performance, we
evaluate LISA against HODet on the Arctic dataset. As
HODet predicts only object bounding boxes, we employ
SAM to generate object segmentations based on these pre-
dictions. LISA outperforms HODet, achieving an average
IoU of 0.74 compared to 0.61. A visual comparison in Fig-

ure 12 shows that HODet frequently misidentifies objects
and detects extraneous elements.

Input HODet HODet+SAM LISA
Figure 12. Visualization of the ablation on HOI reasoning large
model.

The Selection of Large Reconstruction Models. While
our pipeline incorporates the open-source model In-
stantMesh for object reconstruction, it could significantly
benefit from a more advanced model. For compari-
son, we employ the state-of-the-art commercial model
Tripo3D [61]. Fig. 19 displays the reconstructed meshes
produced by both approaches on a range of challenging in-
the-wild images. This comparison highlights the potential
of our approach to combine the strengths of multiple large-
scale models to achieve highly accurate object reconstruc-
tion across diverse scenarios.

To assess the impact of reconstruction quality, we eval-
uate the optimization results using InstantMesh reconstruc-
tion, Tripo3D reconstruction, and ground truth (GT) meshes
on Oakink dataset. As shown in the table below, lower-
quality reconstructions (indicated by higher Chamfer Dis-
tance (C.D.) values) result in poorer HOI performance.

Object quality HOI results final hand results
F5 " F10 " C.D. # S.D.# I.V.# MPVPE# MPJPE#

GT 1.00 1.00 0.00 1.92 2.44 0.86 0.77
Tripo3D 0.280 0.503 0.842 2.76 4.05 1.15 1.21

InstantMesh 0.247 0.445 1.035 3.08 4.11 1.19 1.22

Table 5. The impact of object reconstruction quality on HOI opti-
mization performance.

9.3. Qualitative Comparison Results
Comparative results on In-th-wild Images As depicted
in Figure 13, we showcase qualitative comparisons with
IHOI, AlignSDF, gSDF, MOHO, and our method on in-the-
wild images. Our approach excels in accurately reconstruct-
ing intricate object geometries and details.

Additional comparative results on public datasets.
Here we provide additional comparative results on public



Figure 13. Qualitative Comparison of IHOI, AlignSDF, gSDF, MOHO, and Our Method on in-the-wild Images

datasets. Fig. 16 demonstrates comparisons with IHOI and
MOHO on the OakInk dataset, while Fig. 17 and Fig. 18
show our method’s performance on the Arctic and DexYCB
datasets, respectively. These additional examples demon-
strate our method’s performance across diverse scenarios.

9.4. Failure Cases Analysis
Most failures originate from the initial reconstruction stage
rather than the optimization stage. As shown in Figure 14,
the inpainting model occasionally introduces artifacts, caus-
ing the object being held to blend with the background and
making segmentation challenging. Consequently, the input
images for the large reconstruction model become incoher-
ent and deviate significantly from real-world objects. We
believe that incorporating more advanced inpainting mod-
els and leveraging hand contours in the segmentation pro-
cess are promising directions for future exploration.

We also evaluated our pipeline on the MOW dataset.
The images in this dataset are of relatively low quality, fre-
quently displaying ambiguous grasping poses and motion
blur. These factors present significant challenges for both
inpainting and object reconstruction. Figure 15 illustrates
typical examples of failure cases observed on the MOW
dataset.

Figure 14. Examples of failure Cases in the OakInk dataset. Fail-
ures primarily result from artifacts introduced by the inpainting
model.

Figure 15. Examples of failure cases on the MOW dataset. The
last column is the synthesized 6 views from InstantMesh, it shows
that motion blur and ambiguous grasping present significant chal-
lenges for object reconstruction.
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Figure 16. This gallery showcases the outcomes of our hand-object reconstruction on the dataset OakInk. The first column is the input
image, we present the camera view and another view to display the reconstructed HOI meshes.
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Camera View Other ViewFigure 17. This gallery showcases the outcomes of our hand-object reconstruction on the dataset Arctic.
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Figure 18. This gallery showcases the outcomes of our hand-object reconstruction on the dataset DexYCB.
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Figure 19. This gallery showcases the outcomes of our hand-object reconstruction results on in-the-wild images, we test the reconstruction
result on two LRM, instantmesh and tripo3d.


	Introduction
	Related Works
	Hand-Object Interactions Reconstruction
	Single-view 3D Reconstruction
	Image-based Hand Pose Estimation

	Methodology
	Problem Formulation
	Pipeline Overview
	Initial Reconstruction of Hand and Object
	Hand-Object Interaction Optimization

	Experiments
	Experimental Setup
	Datasets and Baselines
	Evaluation Criteria
	Comparison Results
	Ablation Study and Discussions

	Conclusion
	Acknowledgements
	Initial Reconstruction of Hand and Object
	Hand-Object Interaction Reasoning
	Object Reconstruction

	Hand-Object Interaction Optimization
	Experiments
	Running Time Analysis
	Ablation on Large Models 
	Qualitative Comparison Results
	Failure Cases Analysis


